Co-Ordination Compounds

1. **Potassium ferrocyanide is an example for**
 1) Complex salts
 2) Normal salts
 3) Double salts
 4) Basic salts

2. **Example for a coordination compound is**
 1) KCl . Mg Cl₂ . 6H₂O
 2) K₂SO₄.Al₂(SO₃)₂4H₂O
 3) CoCl₃. 6N H₃
 4) Fe SO₄.(NH₄)₂ SO₄. 6 H₂O

3. **Which is a double salt?**
 1) Carnallite
 2) Potassium Ferrocyanide
 3) Potassium ferricyanide
 4) Nessler’s reagent

4. **Which forms equal number of moles of ions, when one mole it is dissolved in excess of water**
 1) Ferrous Ammonium Sulphate, Carnallite
 2) Carnallite, Alum
 3) Alum, Potassium Ferrocyanide
 4) Potassium Ferrocyanide, Potassium Ferricyanide

5. **Which answers all the tests of the constituent ions?**
 1) Mohr’s Salt
 2) Nessler’s Reagent
 3) Lithium Aluminium Hydride
 4) Prussian blue coloured complex
6. In which of the following transition metal complexes does the metal exhibit zero oxidation state?
1) [Co (NH₃)₆] Cl₃ 2) [Fe (H₂O)₆] SO₄
3) [Ni (CO)₄] 4) [Fe (H₂O)₆] Cl₃

7. The number of moles of ions produced when one mole of Potassium Ferricyanide is dissolved in water is
1) 2 2) 4 3) 5 4) 6

8. Total number of moles of ions that can be obtained from each mole of [Co (NH₃)₃ Cl₃] is
1) 1 2) 0 3) 3 4) 4

9. The number of ions formed in aqueous solution by the compound [Co (NH₃)₄ Cl₂] Cl is
1) 2 2) 3 3) 4 4) 5

10. The following does not give a precipitate either with AgNO₃ or BaCl₂
1) [Co (NH₃)₅ Cl] SO₄ 2) [Co (NH₃)₃ Cl₃]
3) [Co (NH₃)₄ Cl₂] Cl 4) [Co(NH₃)₂ Cl₄] Cl

11. Which of the following has highest molar conductivity?
1) [Co (NH₃)₆] Cl₃ 2) [Co (NH₃)₅Cl] Cl₂
3) [Co (NH₃)₄ Cl₂] Cl 4) [Co (NH₃)₃ Cl₃]

12. Transition elements form complexes readily because
1) Small size of Cation 2) Large ionic Charge
3) Vacant d Orbitals 4) All the above

13. Which of the following is cationic complex?
1) K₄[Fe(CN)₆]
2) \([\text{Ni(CO)}_4]\)

3) \([\text{Co(NH}_3)_3\text{Cl}_3]\)

4) \([\text{Cu(NH}_3)_4\text{SO}_4]\)

14. The no. of moles of AgCl obtained when excess AgNO\(_3\) is added to one mole of \([\text{Cr(NH}_3)_4\text{Cl}_2]\text{Cl}\)

 1) 1 2) 2 3) 3 4) 4

15. Aqueous solution of \([\text{Co(H}_2\text{O})_5 \text{SO}_4]\text{Cl}\) gives precipitate with

 1) \(\text{BaCl}_2\text{ (aq)}\) 2) \(\text{AgNO}_3\text{ (aq)}\) 3) Both 1 and 2 4) Neither 1 nor 2

16. The following solutions requires three moles of AgNO\(_3\) for the complete precipitation of all the chloride ions present in it

 1) One litre of 1M \([\text{Co(NH}_3)_6]\text{Cl}_3\)

 2) Three litres of 1M \([\text{Co(NH}_3)_4\text{Cl}_2]\text{Cl}\)

 3) One litre of 1.5M \([\text{Co(NH}_3)_5\text{Cl}]\text{Cl}_2\)

 4) All the above

17. Bonds present in \(\text{K}_4[\text{Fe(CN)}_6]\) are

 1) Only ionic 2) Only covalent

 3) Ionic and Covalent 4) Ionic, covalent and coordinate covalent
Ligands and Co-Ordination Number

18. Ligand in a metal carbonyl complex is
 1) NH₃ 2) CO 3) CN⁻ 4) SCN⁻

19. The ionizable valency of Ni in Ni (CO)₄ is
 1) 2 2) 4 3) 0 4) 1

20. According to Werner’s theory of valency transition metals possesses
 1) Only one type of valency 2) Two types of valencies
 3) Three types of valencies 4) Four types of valencies

21. The no. of moles of AgCl ppted when excess of AgNO₃ is mixed with one mole
 of [Cr (NH₃)₄ Cl₂] Cl is
 1) 0 2) 1 3) 2 4) 3

22. A bidentate ligand is
 1) Oxalate ion 2) Carbon Monoxide 3) Nitronium ion 4) Water

23. Which is a polydentate ligand
 1) EDTA 2) Ethylene Diamine 3) Oxalate ion 4) CO

24. An ambident ligand is
 1) CO 2) CN⁻ 3) CO₂ 4) H₂O
IUPAC Nomenclature of Co-Ordination Compounds

25. IUPAC name for the complex is \(\left[\text{Cu} \left(\text{NH}_3 \right)_4 \right] \text{SO}_4 \)

1) Cuprammonium Sulphate
2) Copper Sulphate Tetra Ammonia
3) Tetramine Copper Sulphate
4) Copper Ammonium Sulphate

26. HexaaquoTitanium Chloride is represented as

1) \([\text{Ti} (\text{H}_2\text{O})_6] \text{Cl}_3 \)
2) \([\text{TiCl}_3] 6\text{H}_2\text{O} \)
3) \([\text{Ti} (\text{H}_2\text{O})_5 \text{Cl}] \text{Cl}_2 \)
4) \([\text{Ti} (\text{H}_2\text{O})_3 \text{Cl}_3] \)

27. Which of the following is not a neutral molecular complex?

1) \([\text{Co} (\text{NH}_3)_3 \text{Cl}_3] \)
2) \([\text{Ni} (\text{CO})_4] \)
3) \([\text{Cu} (\text{NH}_3)_4] \text{SO}_4 \)
4) All

Bonding and Effective Atomic Number

28. Which does not obey EAN rule?

1. \(K_4 [\text{Fe} (\text{CN})_6] \)
2. \(K_3 [\text{Fe} (\text{CN})_6] \)
3. \([\text{Co} (\text{NH}_3)_6] \text{Cl}_3 \)
4. \([\text{Ni} (\text{CO})_4] \)

29. Which follows EAN rule?

1. \(\text{Fe} (\text{CO})_5 \)
2. \(\text{Ni} (\text{CO})_4 \)
3. \[K_4[Fe(CN)_6] \]

4. All are correct

30. The complex follows the EAN rule. Then the value of \(x \) is

1. 3
2. 4
3. 5
4. 6

31. Assertion (A): Racemic mixture has a net rotation of zero.
Reason (R): Racemic mixture contains optically inactive isomers.

1. Both A and R are true, R properly explains A.
2. Both A and R are true, R does not explain A.
3. A is true, but R is false.
4. A is false, but R is true.

32. Ammonium ions are detected with

1) Nessler’s reagent
2) Borsch reagent
3) Tollon’s reagent
4) Fehling’s solution

33. The complex \(\left[Fe(H_2O)_5NO \right]^{2+} \) is formed in the brown ring test for nitrates when freshly prepared \(FeSO_4 \) solution is added to aqueous solution of \(NO_3^- \) followed by addition of \(conH_2SO_4 \). Select correct statement about this complex.

1) Colour change is due to charge transfer
2) It has iron in +1 oxidation state and nitosyl as \(NO^+ \)
3) It has magnetic of 3.87 BM confirming three unpaired electrons in
4) All are correct statements

34. The yellow coloured solution of chromate salt changes to orange colour on acidification due to the formation of

1) \(Cr^{3+} \)
2) \(Cr_2O_7^{2-} \)
3) \(CrO_4^{-} \)
4) \(Cr_2O_3 \)

35. Blue solution of \(CuSO_4 \) on treatment with excess \(KCN \) gives colourless solution due to the

1) Formation of \(CuCN \)

www.sakshieducation.com
2) Formation of Cu(OH)_2

3) Formation of $[\text{Cu(CN)}_4]^{2-}$

4) Cu^{2+} is reduced by CN^- to Cu^+ which forms complex $[\text{Cu(CN)}_4]^{3-}$.

36. Hypo $\xrightarrow{\text{AgNO}_3}$ white ppt $\xrightarrow{\text{Hypo}}$ soluble complex x. the x is

1) $\text{Na}_2\text{S}_2\text{O}_3$
2) $\text{Na}_2[\text{Fe(CN)}_6]$
3) $\text{Na}_3[\text{Ag(S}_2\text{O}_3)_2]$
4) $\text{Na}_2\text{S}_3\text{O}_6$

37. Which of the following cannot be detected by AgNO$_3$ in qualitative analysis?

1) NaCl
2) NaBr
3) NaF
4) KCl

KEY

1) 1 2) 3 3) 1 4) 1 5) 1 6) 3 7) 2 8) 2 9) 1 10) 2
11) 1 12) 2 13) 4 14) 1 15) 2 16) 4 17) 4 18) 2 19) 3
20) 2 21) 2 22) 1 23) 1 24) 2 25) 3 26) 1 27) 3 28) 2 29) 4 30) 3
31) 3 32) 1 33) 4 34) 1 35) 4 36) 3 37) 3
Werner Theory of Co-Ordination Compounds

1. The groups satisfying the secondary valencies of a cation in a complex are called
 1) Radicals
 2) Electron deficient Molecules
 3) Primary valencies
 4) Ligands

2. The primary valence of the metal ion is satisfied by
 1) Neutral molecules 2) Positive ions
 3) Negative ions 4) All

3. IUPAC name of the complex is
 1) Cobalt trichloride penta amonium
 2) Penta amine carbonyl chloride
 3) Trichloro penta amino cobalt
 4) Pentamine chloro cobalt chloride

4. No of ionizable & non-ionizable ions in reprehensively are
 1) 3, 0 2) 2, 1 3) 1, 2 4) 0, 3

5. Silver Chloride dissolves in excess ammonia due to the formation of a soluble complex whose formula is
 1) \([\text{Ag} (\text{NH}_3) \text{Cl}\] 2) \([\text{Ag} (\text{NH}_3)_2 \text{Cl}\]
 3) \([\text{Ag} (\text{NH}_3)_3\text{Cl}\] 4) \([\text{Ag} (\text{NH}_3)_4 \text{Cl}\]

6. Copper sulphate solution forms blue coloured complex with excess of ammonia. Its formula is
 1) \([\text{Cu} (\text{NH}_3)_4]^{+3}\] 2) \([\text{Cu} (\text{NH}_3)_4]^{+2}\]
 3) \([\text{Cu} (\text{NH}_4)_3]^{+2}\] 4) \([\text{Cu} (\text{NH}_4)_3]^{+3}\]
7. Zn2+ dissolve in excess of NaOH due to the formation of
 1) Soluble Zn (OH)\textsubscript{2} 2) Soluble Na\textsubscript{2} [Zn (OH)\textsubscript{4}]
 3) Soluble Na (Zn (OH)\textsubscript{3}) 4) ZnO

8. Which of the following cannot act as a ligand?
 1) BF\textsubscript{3} 2) NH\textsubscript{3} 3) NO+ 4) CN-

9. Which of the following is not a drawback of Werner’s theory?
 1) Does not explain the valency of metal ions in the complex
 2) Does not give any explanation for the colour of complex compounds
 3) Does not explain the magnetic behaviour of complex compounds
 4) Does not correlate electronic configuration of the metal with the formation of complex

10. The primary and secondary valency of Co in the complex respectively are
 1) 6 & 3 2) 3 & 6 3) 4 & 3 4) 3 & 5

11. Number of ions satisfying both primary and secondary valency are in
 1) 1 2) 2 3) 3 4) 4

12. Pick out the incorrect statement.
 i) Primary valency of a transition metal ion in complex represents its oxidation number.
 ii) Zn2+ is colorless.
 iii) MnCl\textsubscript{2} exhibit green color in aqueous solution.
 iv) Fe, Co, Ni are examples of diamagnetic in nature.
 1) Only i, ii 2) Only ii
 3) Only iii, iv 4) Only iv

13. When one mole of a complex is treated with excess of solution, 143.5 g of white precipitate is formed the complex is
 1) CoCl\textsubscript{3}.6NH\textsubscript{3} 2) CoCl\textsubscript{3}.5NH\textsubscript{3}
 3) CoCl\textsubscript{3}.4NH\textsubscript{3} 4) CoCl\textsubscript{3}.3NH\textsubscript{3}
Valency Bond Theory and Shapes of Coordination Compounds

14. The shape of the complex species will be square planar if its coordination number is
 1) 2 2) 6 3) 5 4) 4

15. Which one of the following acts as a Lewis base in complexes?
 1) CO₂ 2) BF₃ 3) NH₃ 4) BCl₃

16. Which of the following is inner orbital complex?
 1) [CoF₆]³⁻
 2) [Cu(H₂O)₆]²⁺
 3) [Co(NH₃)₆]²⁺
 4) All

17. \(sp^3d^2\) hybridisation is present in
 1) [CoF₆]³⁻ 2) [Ni(CO)₄]
 3) [Co(NH₃)₆]²⁺
 4) All

18. The shape of is
 1) Square Planar 2) Trigonal bipyramidal
 3) Octahedral
 4) Tetrahedral

19. Match the following.
 Set - I Set - II
 A) Co-ordination number 3 1) Pentagonal bipyramidal
 B) Co-ordination number 2 2) Trigonal bipyramidal
 C) Co-ordination number 5 3) Linear
 D) Co-ordination number 7 4) Trigonal planar

 The correct matching is
 A B C D
 1) 4 3 2 1
20. The hybridisation of the complex is $[\text{NiCl}_4]^{2-}$
 1) sp^3 2) dsp^2 3) sp^3d 4) sp^3d^2

21. The hybridisation of the complex is $[\text{Cu(NH}_3)_4]^{2-}$
 1) sp^3 2) sp^3d 3) dsp^2 4) sp^3d^2

22. The hybridisation of the complex is Fe(CO)_5
 1) sp^3d^2 2) dsp^3 3) sp^3 4) d^2sp^3

Bonding and Effective Atomic Number

23. The effective atomic number of iron ion is $[\text{Fe(CN)}_6]^{3-}$
 1. 34 2. 36 3. 37 4. 35

24. Which does not obey EAN rule
 1) Fe(CO)_5 2) $K_4[\text{Fe(CN)}_6]$
 3) $[\text{Cu(NH}_3)_4]\text{SO}_4$ 4) $[\text{Co(NH}_3)_6]\text{Cl}_3$

25. The effective atomic number of central metal ion is wrongly calculated in the following complex?
 1. In $[\text{Ni(CO)}_4]$ the EAN of Ni is 36
 2. In $K_2[\text{Ni(CN)}_4]$ the EAN of Ni is 36
 3. In $K_3[\text{Fe(CN)}_6]$ the EAN of Fe is 35
 4. In $[\text{Cr(NH}_3)_6]\text{Cl}_3$ the EAN of Cr is 33
Crystal Field Theory

26. The crystal field splitting energy for octahedral complex (Δ_o) and tetrahedral complex (Δ_t) are related as

1) $\Delta_t = \frac{4}{9} \Delta_o$
2) $\Delta_t = 0.5 \Delta_o$
3) $\Delta_t = 0.33 \Delta_o$
4) $\Delta_t = \frac{9}{4} \Delta_o$

27. Which of the following is a correct Irving-Williams order? (Tendency of complex formation)

1) $Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+}$
2) $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$
3) $Fe^{2+} < Mn^{2+} < Ni^{2+} < Co^{2+}$
4) $Co^{2+} < Mn^{2+} < Fe^{2+} < Ni^{2+}$

28. Which order is correct in spectrochemical series of ligands?

1) $Cl^- < F^- < C_2O_4^{2-} < NO_2^- < CN^-$
2) $CN^- < C_2O_4^{2-} < Cl^- < NO_2^- < F^-$
3) $C_2O_4^{2-} < F^- < Cl^- < NO_2^- < CN^-$
4) $F^- < Cl^- < NO_2^- < CN^- < C_2O_4^{2-}$
Isomerism in Complexes

29. The property of possessing at least one atom that is attached to four non-identical groups is called

30. A racemic mixture has a net rotation
 1. To right of original plane
 2. To left of original plane
 3. To right or left of original plane
 4. Zero

31. Optical isomer has
 A) Property of chirality
 B) Almost identical chemical properties
 C) Almost identical physical properties
 D) Similar rotation of plane polarised light
 1. A, B, C are correct.
 2. B, C, D are correct.
 3. A, C, D are correct.
 4. A, B, D are correct.
Application of Complexes in Qualitative Analysis

32. The central metal ion in haeme is
 1) Fe^{3+} 2) Co^{3+} 3) Mn^{2+} 4) Mg^{2+}

33. The central metal present in chlorophyll is
 1) Mg 2) Co 3) Fe 4) Ca

34. Nessler’s reagent is
 1) K_2HgI_4 2) K_2HgI_2
 3) K_2HgCl_4 4) HgI_2

35. The metal ion present in Vitamin B$_{12}$ is...........
 1) Co^{3+} 2) Co^{2+} 3) Fe^{2+} 4) Fe^{3+}

36. The coordination number of Fe (II) in Oxyhaemoglobin is
 1) 6 2) 4 3) 8 4) 10

Key

1) 4 2) 3 3) 4 4) 2 5) 2 6) 2 7) 2 8) 1 9) 1 10) 2
11) 1 12) 3 13) 3 14) 4 15) 3 16) 3 17) 1 18) 3 19) 1 20) 1
21) 3 22) 2 23) 4 24) 3 25) 2 26) 1 27) 1 28) 4 29) 2 30) 4
31) 1 32) 1 33) 1 34) 1 35) 1 36) 1